Quasi-orthogonality and differential equations
نویسندگان
چکیده
منابع مشابه
Quasi-Orthogonality and Quasi-Projections
Our main concern in this paper is the design of simplified filtering procedures for the quasi-optimal approximation of functions in subspaces of L2 generated from the translates of a function φ(x). Examples of signal representations that fall into this framework are Schoenberg’s polynomial splines of degree n, and the various multiresolution spaces associated with the wavelet transform. After a...
متن کاملQuasi - Exactly - Solvable Differential Equations
A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of the algebra of differential (difference) operators in finitedimensional represent...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On quasi-linear stochastic partial differential equations
We prove existence and uniqueness of the solution of a parabolic SPDE in one space dimension driven by space-time white noise, in the case of a measurable drift and a constant diffusion coefficient, as well as a comparison theorem.
متن کاملPreserving Poisson Structure and Orthogonality in Numerical Integration of Differential Equations
We consider the numerical integration of two types of systems of differential equations. We first consider Hamiltonian systems of differential equations with a Poisson structure. We show that symplectic Runge-Kutta methods preserve this structure when the Poisson tensor is constant. Using nonlinear changes of coordinates this structure can also be preserved for non-constant Poisson tensors, as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1990
ISSN: 0377-0427
DOI: 10.1016/0377-0427(90)90361-3